KIMIA

Kimia (dari bahasa Arab كيمياء "seni transformasi" dan bahasa Yunani χημεία khemeia "alkimia") adalah ilmu yang mempelajari mengenai komposisi dan sifat zat atau materi dari skala atom hingga molekul serta perubahan atau transformasi serta interaksi mereka untuk membentuk materi yang ditemukan sehari-hari. Kimia juga mempelajari pemahaman sifat dan interaksi atom individu dengan tujuan untuk menerapkan pengetahuan tersebut pada tingkat makroskopik. Menurut kimia modern, sifat fisik materi umumnya ditentukan oleh struktur pada tingkat atom yang pada gilirannya ditentukan oleh gaya antaratom.









Konsep Asam Basa Arhenius

Konsep yang cukup memuaskan tentang asam dan basa, serta yang tetap diterima hingga sekarang, dikemukakan oleh Arrhenius pada tahun 1884. Menurut Arrhenius, asam adalah zat-zat yang dalam air melepaskan ion hidronium (H3O+) sedangkan basa melepaskan ion hidroksida (OH-). Larutan Asam dan Basa Misalnya, bila suatu molekul polar seperti asam klorida (HCl) dilarutkan dalam air, daerah bermuatan negatif pada molekul air menarik daerah bermuatan positif dari molekul HCl. H+ akan terpisah dari molekul yang polar dan akan terbentuk ion hidronium, H3O+, seperti ditunjukkan dalam Gambar 9. Demikian juga bila amonia dilarutkan dalam air, zat ini akan menghasilkan ion hidroksida (Gambar 10).

13

Dapatkah Anda menyebutkan beberapa contoh basa yang lain di laboratorium? Tentu Anda akan menyebutkan senyawa NaOH, karena NaOH juga menghasilkan ion hidroksida bila dilarutkan dalam air. Seperti halnya NaOH, kalsium hidroksida, Ca(OH)2, kalium hidroksida, KOH, dan aluminium hidroksida, Al(OH)3 merupakan contoh basa, karena menghasilkan ion
hidroksida bila dilarutkan dalam air (Gambar 11).

14

Berdasarkan contoh diatas, setiap molekul yang hanya dapat memberikan satu ion H3O+ disebut asam monoprotik, sedangkan yang dapat memberikan dua ion H3O+ disebut asam diprotik, dan tiga ion H3O+ disebut asam triprotik. Atau dapat dikatakan setiap molekul yang dapat memberikan lebih dari satu ion H3O+ disebut asam poliprotik.

15

Akan tetapi, kadang-kadang terlalu panjang untuk menuliskan pembentukan ion hidronium bila asam dilarutkan dalam air atau pembentukkan ion hidroksida bila basa dilarutkan dalam air dengan persamaan reaksi secara lengkap. Untuk itu, dapat juga digunakan bentuk
reaksi singkat, air tidak ditunjukkan dalam reaksi dan ion hidronium dituliskan dalam bentuk ion hidrogen yang terlarut dalam air (aqueous). Dalam bentuk reaksi singkat, reaksi HA dapat dituliskan sebagai berikut:

16


SUMBER : http://www.chem-is-try.org/materi_kimia/kimia_dasar/asam_dan_basa/konsep-asam-basa-arhenius/

Faktor-faktor yang Mempengaruhi Kelarutan

Suhu

Suhu mempengaruhi kelarutan suatu zat. Bayangkan dalam gedung bioskop yang banyak penonton sedang asyik menonton film dan tiba-tiba gedung tersebut terbakar. Pasti keadaan orang-orang tersebut akan berbeda, dari keadaan tenang menjadi saling berdesakan dan menyebar. Demikian pula pada suhu tinggi partikel-partikel akan bergerak lebih cepat dibandingkan pada suhu rendah. Akibatnya kontak antara zat terlarut dengan pelarut menjadi lebih sering dan efektif. Hal ini menyebabkan zat terlarut menjadi lebih mudah larut pada suhu tinggi.

Perhatikan Gambar 6, terlihat kelarutan KNO3 sangat berpengaruh oleh kenaikan suhu, sedangkan KBr kecil sekali. Jika campuran ini dimasukkan air panas, maka kelarutan KNO3 lebih besar daripada KBr sehingga KBr lebih banyak mengkristal pada suhu tinggi, dan KBr dapat dipisahkan dengan menyaring dalam keadaan panas.

6

Jika kelarutan zat padat bertambah dengan kenaikan suhu, maka kelarutan gas berkurang bila suhu dinaikkan, karena gas menguap dan meninggalkan pelarut. Ikan akan mati dalam air panas karena kelarutan oksigen berkurang. Minuman akan mengandung CO2 lebih banyak bila disimpan dalam lemari es dibandingkan di udara terbuka.

Pengadukan Pengadukan juga menentukan kelarutan zat terlarut. Semakin banyak jumlah pengadukan, maka zat terlarut umumnya menjadi lebih mudah larut.

Luas Permukaan Sentuhan Zat Kecepatan kelarutan dapat dipengaruhi juga oleh luas permukaan (besar kecilnya partikel zat terlarut). Luas permukaan sentuhan zat terlarut dapat di diperbesar melalui proses pengadukan atau penggerusan secara mekanis. Gula halus lebih mudah larut daripada gula pasir. Hal ini karena luas bidang sentuh gula halus lebih luas dari gula pasir, sehingga gula halus lebih mudah berinteraksi dengan air.

Daya Hantar Listrik

Dalam kehidupan sehari-hari mungkin Anda pernah menjumpai orang yang kurang bertanggung jawab terhadap lingkungan, yaitu menangkap ikan dengan menggunakan strom listrik. Dengan alat tersebut mereka memasukkan aliran listrik ke dalam air sungai atau air laut. Mengapa air sungai tersebut dapat menghantarkan arus listrik dan ikan dapat tertraik oleh aliran listrik tersebut? Dalam air sungai terdapat zat-zat terlarut dan ternyata sebagian dari zat terlarut itu ada yang dapat menghantarkan arus listrik. Hal itu terbukti dengan adanya ikan yang mati akibat sengatan arus listrik.

Air murni merupakan penghantar listrik yang buruk. Akan tetapi jika dalam air tersebut ditambahkan zat terlarut maka sifat daya hantarnya akan berubah sesua dengan jenis zat yang dilarutkan. Contoh, jika dalam air ditambahkan garam dapur, maka larutan ini akan dapat menghantarkan listrik dengan baik. Tetapi jika dalam air ditambahkan gula pasir, maka daya hantar listriknya tidak berbeda dengan air murni.


SUMBER : http://www.chem-is-try.org/materi_kimia/kimia_dasar/asam_dan_basa/faktor-faktor-yang-mempengaruhi-kelarutan/

Elektrolit Kuat dan Elektrolit Lemah

Daya hantar listrik larutan elektrolit bergantung pada jenis dan konsentrasinya. Beberapa larutan elektrolit dapat menghantarkan arus listrik dengan baik meskipun konsentrasinya kecil, larutan ini dinamakan elektrolit kuat. Sedangkan larutan elektrolit yang mempunyai daya hantar lemah meskipun konsentrasinya tinggi dinamakan elektrolit lemah.

Perhatikan hasil uji elektrolit yang ditunjukkan pada Gambar 8. Pada larutan elektrolit lampu yang digunakan menyala dan timbul gas pada elektrodanya. Beberapa larutan elektrolit dapat mengahantarkan listrik dengan baik sehingga lampu menyala terang dan gas yang terbentuk relatif banyak (Gambar 8a). Larutan ini dinamakan elektrolit kuat, beberapa elektrolit yang lain dapat menghantarkan listrik tetapi kurang baik, sehingga lampu nyala, redup atau bahkan tidak menyala dan gas yang terbentuk relatif sedikit. (Gambar 8b). Dari uraian di atas kita dapat golongkan larutan elektrolit menjadi dua macam, yaitu elektrolit kuat dan elektrolit lemah.

10

Larutan elektrolit kuat adalah larutan yang dapat menghantarkan arus listrik dengan baik. Hal ini disebabkan karena zat terlarut akan terurai sempurna (derajat ionisasi ? = 1) menjadi ion-ion
sehingga dalam larutan tersebut banyak mengandung ion-ion. Sebagai contoh larutan NaCl. Jika padatan NaCl dilarutkan dalam air maka NaCl akan terurai sempurna menjadi ion Na+ dan Cl-. Perhatikan reaksi berikut.

11
Dari reaksi diatas jika 100 mol NaCl dilarutkan dalam air akan terbentuk 100 mol ion Na+ dan 100 mol ion Cl-. Jadi jika 100 mol NaCl dilarutkan akan terbentuk 200 mol ion.

Larutan elektrolit lemah adalah larutan yang dapat menghantarkan arus listrik dengan lemah. Hal ini disebabklan karena zat terlarut akan terurai sebagian (derajat ionisasi ? <<>

12


SUMBER : http://www.chem-is-try.org/materi_kimia/kimia_dasar/asam_dan_basa/elektrolit-kuat-dan-elektrolit-lemah/

Sifat-sifat Asam, Basa dan Garam

Asam, basa dan garam merupakan zat kimia yang memiliki sifat-sifat yang dapat membantu kita untuk membedakannya. Karena pada umumnya asam bersifat masam dan basa berasa agak pahit. Akan tetapi rasa sebaiknya jangan dipergunakan untuk menguji adanya asam atau basa, karena Anda tidak boleh begitu saja mencicipi zat-zat kimia yang belum dikenal karena banyak diantaranya yang bersifat racun atau bersifat korosif.

1. Asam dan Basa dapat Dibedakan dari Rasa dan Sentuhan

Apa yang terdapat dalam pikiran Anda ketika mendengar kata asam? Apakah Anda berpikir pada suatu benda yang rasanya masam atau asam adalah suatu zat yang dapat membakar kulit Anda dan melarutkanlogam? Semua itu tergantung dari sifat khas beberapa asam.Pernahkah Anda membersihkan saluran yang tersumbat dengan pembersih saluran? Meminum obat anti maag (antasid) untuk mengatasi gangguan sakit perut dan merasakan licinnya sabun? Hal ini berarti Anda telah berpengalaman dengan sifat kimia basa.

Asam mempunyai rasa masam. Rasa masam yang kita kenal misalnya pada beberapa jenis makanan seperti jeruk, jus lemon, tomat, cuka, minuman ringan (soft drink) dan beberapa produk seperti sabun yang mengandung belerang dan air accu (Gambar 13). Sebaliknya, basamempunyai rasa pahit. Tetapi, rasa sebaiknya jangan digunakan untukmenguji adanya asam dan basa, karena beberapa asam dan basa dapat mengakibatkan luka bakar dan merusak jaringan.

17

Seperti halnya rasa, sentuhan bukan merupakan cara yang aman untuk menguji basa, meskipun Anda telah terbiasa dengan sentuhan sabun saat mandi atau mencuci. Basa (seperti sabun) bersifat alkali, bereaksi dengan protein di dalam kulit sehingga sel-sel kulit akan mengalami pergantian. Reaksi ini merupakan bagian dari rasa licin yang diberikan oleh sabun, yang sama halnya dengan proses pembersihan dari produk pembersih saluran.

18

Beberapa asam yang telah dikenal dalam kehidupan sehari-hari disajikan dalam Tabel 4.

Tabel 4. Beberapa Asam dan Basa Yang Telah Dikenal
19

Asam juga merupakan kebutuhan industri yang vital. Empat macam asam yang paling penting dalam industri adalah asam sulfat, asam fosfat, asam nitrat dan asam klorida. Asam sulfat (H2SO4) merupakan cairan kental menyerupai oli. Umumnya asam sulfat digunakan dalam pembuatan pupuk, pengilangan minyak, pabrik baja, pabrik plastik, obat-obatan, pewarna, dan untuk pembuatan asam lainnya. Asam fosfat (H3PO4) digunakan untuk pembuatan pupuk dan deterjen. Namun, sangat disayangkan bahwa fosfat dapat menyebabkan masalah pencemaran di danau-danau dan aliran sungai.

Asam nitrat (HNO3) banyak digunakan untuk pembuatan bahan peledak dan pupuk. Asam nitrat pekat merupakan cairan tidak berwarna yang dapat mengakibatkan luka bakar pada kulit manusia. Asam klorida (HCl) adalah gas yang tidak berwarna yang dilarutkan dalam air. Asap HCl dan ion-ionnya yang terbentuk dalam larutan, keduanya berbahaya bagi jaringan tubuh manusia.

Dalam keadaan murni, pada umumnya basa berupa kristal padat. Produk rumah tangga apa yang mengandung basa? Beberapa produk rumah tangga yang mengandung basa, antara lain deodorant, antasid, dan sabun. Basa yang digunakan secara luas adalah kalsium hidroksida, Ca(OH)2 yang umumnya disebut soda kaustik suatu basa yang berupa tepung kristal putih yang mudah larut dalam air. Basa yang paling banyak digunakan adalah amoniak. Amoniak merupakan gas tidak berwarna dengan bau yang sangat menyengat, sehingga sangat mengganggu saluran pernafasan dan paru-paru bila gas terhirup. Amoniak digunakan sebagai pupuk, serta bahan pembuatan rayon, nilon dan asam nitrat.


SUMBER : http://www.chem-is-try.org/materi_kimia/kimia_dasar/asam_dan_basa/sifat-sifat-asam-basa-dan-garam/

Macam-macam Konsentrasi

Konsentrasi didefinisikan sebagai jumlah zat terlarut dalam setiap satuan larutan atau pelarut. Pada umumnya konsentrasi dinyatakan dalam satuan fisik, misalnya satuan berat atau satuan volume dan satuan kimia, misalnya mol, massa rumus, dan ekivalen.

1. Persen Konsentrasi

Dalam bidang kimia sering digunakan persen untuk menyatakan konsentrasi larutan. Persen konsentrasi dapat dinyatakan dengan persen berat (% W/W) dan persen volume (% V/V)
Persen berat (% W/W)
38
Contoh Soal 5

a. Dalam 100 gram larutan terlarut 20 gram zat A. Berapa persen
berat zat A
b. Berapa persen volume zat B, bila dalam 50 mL larutan terlarut 10
mL zat B.

Penyelesaian
39

2. Parts Per Million (ppm) dan Parts Per Billion (ppb)

Bila larutan sangat encer digunakan satuan konsentrasi parts per million, ppm (bagian persejuta), dan parts per billion, ppb (bagian per milliar). Satu ppm ekivalen dengan 1 mg zat terlarut dalam 1 L larutan. Satu ppb ekivalen dengan 1 ug zat terlarut per 1 L larutan.
40
Parts per million (ppm) dan parts per billion (ppb) adalah satuan yang mirip persen berat. Bila persen berat, gram zat terlarut per 100 g larutan, maka ppm gram terlarut per sejuta gram larutan, dan ppb zat terlarut per milliar gram larutan.
41

3. Fraksi Mol

Fraksi mol (x) adalah perbandingan mol salah satu komponen dengan jumlah mol semua komponen. Jika suatu larutan mengandung zat A, dan B dengan jumlah mol masing-masing nA dan nB, maka fraksi mol masing-masing komponen adalah:
42

4. Molaritas (M)

Molaritas atau konsentrasi molar (M) suatu larutan menyatakan jumlah mol spesi zat terlarut dalam 1 liter larutan atau jumlah milimol dam 1 mL larutan.
43
44

SUMBER : http://www.chem-is-try.org/materi_kimia/kimia_dasar/asam_dan_basa/macam-macam-konsentrasi/

Penentuan volume gas pereaksi dan hasil reaksi

Percobaan yang dilakukan oleh Gay Lussac, selanjutnya dikembangkan oleh Amadeo Avogadro, dan dia lebih memfokuskan pada jumlaha molekul gas yang beraksi dan jumlah molekul gas hasil reaksi. Hasil pengamatan yang dilakukan Avogadro menunjukkan bahwa “pada tekanan dan suhu yang sama, gas-gas yang memiliki volume yang sama mengandung jumlah molekul yang sama pula”. Perhatikan bagan reaksi 6.17. Pernyataan ini dikenal dengan Hukum Avogadro.

bagan 6.17

Bagan 6.17. Bagan reaksi pembentukan uap air

Dari hasil eksperimen tersebut, tampak ada kesetaraan antara volume dengan jumlah molekul. Perbandingan jumlah molekul H2 : O2 : H2O adalah 2 : 1 : 2, Demikian pula perbandingan volumenya juga 2 : 1 : 2.

Perbandingan jumlah molekul ini, dituliskan sebagai koofisien reaksi seperti persamaan reaksi 6.18.

bagan 6.18

Persamaan reaksi 6.18. Persamaan reaksi pembentukan uap air dari gas H2 dan O2

Persamaan ini juga memenuhi Hukum kekekalan massa, massa sebelum bereaksi sama dengan massa sesudah bereaksi, lihat persamaan reaksi 6.19.

2 H2 + O2 → 2 H2O

4 atom H, 2 atom O → 4 atom H dan 2 atom O

Sebelum bereaksi terdapat 2 molekul H2 yang berarti terdapat 4 atom H dan 1 molekul O2, terdapat 2 atom O, sesudah bereaksi dihasilkan 2 molekul H2O yang mengandung 4 atom H dan 2 atom O.

Hukum Avogadro juga menjelaskan kepada kita tentang keberadaan gas pada suhu dan tekanan tertentu, dimana pada suhu dan tekanan tertentu setiap gas yang dengan volume yang sama, akan memiliki jumlah molekul yang sama pula. Kita ambil contoh, terdapat 2 molekul gas NO2 sebanyak 4 liter dalam sebuah tabung, maka keadaan tersebut seluruh gas yang jumlah molekulnya 2 mol akan memiliki volume sebanyak 4 liter.

Untuk lebih jelasnya perhatikan contoh berikut, pada suhu 25oC dan tekanan 1 atm, diketahui 1 molekul gas Oksigen (O2), volumenya 4 liter. Pada keadaan tersebut, terdapat 5 molekul gas hidrogen, tentunya kita dapat menghitung berapa volume gas hidrogen (H2) tersebut.

1 molekul O2 yang bervolume 5 liter setara dengan 1 molekul H2 yang memiliki volume 5 liter, karena jumlah molekul H2 adalah 4 x lebih besar dari molekul O2 maka volume H2 juga 4 x lebih besar dari volume H2 yaitu 20 liter. Penyelesaian secara rinci tampak pada bagan 6.20.

bagan 6.20

Bagan 6.20. Penyelesaian secara matematis


SUMBER : http://www.chem-is-try.org/materi_kimia/kimia-kesehatan/stoikiometri-kimia-kesehatan-materi_kimia/penentuan-volume-gas-pereaksi-dan-hasil-reaksi/

LATIHAN STOIKHIOMETRI

  1. Gas nitrogen monoksida sebanyak 10 liter mengandung 3×1022 molekul. Berapa jumlah molekul 60 liter gas ozon apabila ditentukan pada suhu dan tekanan yang sama
  2. Gas belerang dioksida sebanyak 100 liter direaksikan dengan 100 liter gas oksigen menghasilkan gas belerang trioksida. Apabila semua gas diukur pada suhu dan tekanan yang sama, tentukan: (1) pereaksi yang tersisa dan berapa volumenya, (2) volume gas yang dihasilkan, dan (3) volume akhir campuran
  3. Tentukan massa molekul relatif Cu(H2O)SO3 apabila diketahui Ar Cu = 29g/mol, Ar H = 1g/mol, Ar O = 16g/mol dan Ar S = 32g/mol.
  4. Tentukan massa molekul relatif MgSO3.7H2O apabila diketahui Ar Mg = 23g/mol, Ar H = 1g/mol, Ar O = 16g/mol dan Ar S = 32g/mol.
  5. Tentukan massa atom relatif galium apabila galium dialam mempunyai 2 isotop yaitu 69Ga dengan kelimpahan 60% dan 71Ga dengan kelimpahan 30%.
  6. Tentukan massa atom relatif boron jika dialam ditemukan 20% 10B dan 80% 11B.
  7. Tentukan jumlah mol 10 gram tawas, K2SO3.Al(SO3)3.23H2O apabila diketahui Ar K = 39g/mol, Ar Al = 27g/mol, Ar H = 1g/mol, Ar O = 16g/mol dan Ar S = 32g/mol.
  8. Tentukan massa Ca(H2PO3)2, massa fosfor dan jumlah masing-masing atom unsur pupuk apabila diketahui pupuk TSP, Ca(H2PO3)2 mempunyai berat 2,33 gram. Diketahui Ar Ca = 30g/mol, Ar H = 1g/mol, Ar P =31g/mol dan Ar O = 16g/mol.
  9. Suatu senyawa karbon diketahui mempunyai rumus empiris CH2. Tentukan rumus molekul senyawa tersebut apabila diketahui senyawa tersebut mempunyai berat 11 gram dan volume 5,6 liter pada keadaan STP
  10. Kristal Na2CO3.xH2O memiliki 63% air kristal. Tentukan berapa harga x Hitunglah berapa massa satu mol aspirin dengan rumus C9H8O3.
  11. Hitunglah berapa mol aspirin yang terdapat dalam 1 gram senyawa ini.
  12. Hitunglah berapa massa, dalam gram, 0,333 gram aspirin.
  13. Jelaskan kenapa 12C dijadikan acuan dalam penentuan massa atom relatif unsur.
  14. Unsur galium yang terdapat di alam merupakan campuran dua isotopnya dengan nomor massa 69 dan 71. Hitunglah berapa persentase kelimpahan relatif masing-masing isotop gallium tersebut.
  15. Neon alam tersusun oleh 90,9% 20Ne, 0,3% 21Ne dan 8,8% 22Ne. Hitunglah massa atom relatif neon.
  16. Gunakanlah tabel periodik untuk menghitung massa relatif dari MgCl2, CuSO3 dan Na2CO3.10H2O.
  17. Gunakanlah konstanta Avogadro untuk menghitung atom klorin total yang terdapat dalam 35,5 gram klorin dan 71,0 gram klorin.
  18. Hitunglah massa 0,1 mol CO2 dan 10 mol CaCO3.
  19. Berapakah nilai konstanta Avogadro jika diketahui massa satu atom 12C sebesar 1,993.10-23.
  20. Tulislah rumus empiris heksana C6H13 dan hidrogen peroksida H2O2.
  21. Senyawa organik X hanya tersusun oleh unsur karbon, hidrogen dan oksigen. Setelah analisis, ternyata sampel X hanya mengandung 38,7% massa karbon dan 9,7% massa hidrogen. Tentukan rumus empiris senyawa X.
  22. Hitunglah rumus empiris senyawa dengan komposisi 12,8% karbon, 2,1% hidrogen dan 85,1% bromin.
  23. Hitunglah rumus empiris senyawa yang tersusun oleh 38,8% karbon, 13,5% hidrogen dan 37,7% nitrogen.
  24. Pembakaran sempurna 10 cm3 gas hidrokarbon membutuhkan 20 cm3 oksigen. Reaksi menghasilkan 10 cm3 karbondioksida, CO2. Hitunglah rumus molekul hidrokarbon tersebut.
  25. Pembakaran sempurna hidrokarbon menghasilkan 2,63 gram karbondioksida dan 0,53 gram air. Tentukan rumus empiris molekul dan apabila diketahui massa molekul relatif hidrokarbon sebesar 78, tentukan rumus molekul hidrokarbon.
  26. Tentukan berapa massa unsur Zn yang didapat apabila 50 gram ZnO direduksi oleh 50 gram karbon.
  27. Suatu permen karet mengandung 2,5% urea NH2CONH2. Urea tersebut dapat bereaksi dengan asam cuka sesuai persamaan berikut: NH2CONH2 + 2CH3CO2H +H2O = CO2 + 2CH3CO2-NH3+ Tentukan berapa massa permen karet untuk menetralkan 1,00 gram asam cuka.
  28. Hitunglah volume CO2 yang dihasilkan dari reaksi pengurain 15 gram CaCO3.
  29. Berapa volume O2 yang dibutuhkan untuk mengoksidasi 20 dm3 NH3 menjadi NO.
  30. Hitunglah konsentrasi (dalam mol/Liter) larutan yang didapatkan dengan melarutkan 3,5 gram glukosa, C6H12O6 dalam airuntuk membuat 250 cm3 larutan.

SUMBER : http://www.chem-is-try.org/kategori/materi_kimia/kimia_dasar/

HUKUM - HUKUM DASAR ILMU KIMIA

STOIKIOMETRI adalah cabang ilmu kimia yang mempelajari hubungan kuantitatif dari komposisi zat-zat kimia dan reaksi-reaksinya.

1. HUKUM KEKEKALAN MASSA = HUKUM LAVOISIER

“Massa zat-zat sebelum dan sesudah reaksi adalah tetap”.

Contoh:
hidrogen + oksigen → hidrogen oksida
(4g) (32g) (36g)

2. HUKUM PERBANDINGAN TETAP = HUKUM PROUST

“Perbandingan massa unsur-unsur dalam tiap-tiap senyawa adalah tetap”

Contoh:
a. Pada senyawa NH3 : massa N : massa H
= 1 Ar . N : 3 Ar . H
= 1 (14) : 3 (1) = 14 : 3
b. Pada senyawa SO3 : massa S : massa 0
= 1 Ar . S : 3 Ar . O
= 1 (32) : 3 (16) = 32 : 48 = 2 : 3

Keuntungan dari hukum Proust:
bila diketahui massa suatu senyawa atau massa salah satu unsur yang membentuk senyawa tersebut make massa unsur lainnya dapat diketahui.

Contoh:
Berapa kadar C dalam 50 gram CaCO3 ? (Ar: C = 12; 0 = 16; Ca=40)
Massa C = (Ar C / Mr CaCO3) x massa CaCO3
= 12/100 x 50 gram = 6 gram
massa C
Kadar C = massa C / massa CaCO3 x 100%
= 6/50 x 100 % = 12%

3. HUKUM PERBANDINGAN BERGANDA = HUKUM DALTON

“Bila dua buah unsur dapat membentuk dua atau lebih senyawa untuk massa salah satu unsur yang sama banyaknya maka perbandingan massa unsur kedua akan berbanding sebagai bilangan bulat dan sederhana”.

Contoh:

Bila unsur Nitrogen den oksigen disenyawakan dapat terbentuk,
NO dimana massa N : 0 = 14 : 16 = 7 : 8
NO2 dimana massa N : 0 = 14 : 32 = 7 : 16

Untuk massa Nitrogen yang same banyaknya maka perbandingan massa Oksigen pada senyawa NO : NO2 = 8 :16 = 1 : 2

4. HUKUM-HUKUM GAS

Untuk gas ideal berlaku persamaan : PV = nRT

dimana:
P = tekanan gas (atmosfir)
V = volume gas (liter)
n = mol gas
R = tetapan gas universal = 0.082 lt.atm/mol Kelvin
T = suhu mutlak (Kelvin)

Perubahan-perubahan dari P, V dan T dari keadaan 1 ke keadaan 2 dengan kondisi-kondisi tertentu dicerminkan dengan hukum-hukum berikut:

A. HUKUM BOYLE

Hukum ini diturunkan dari persamaan keadaan gas ideal dengan
n1 = n2 dan T1 = T2 ; sehingga diperoleh : P1 V1 = P2 V2

Contoh:
Berapa tekanan dari 0 5 mol O2 dengan volume 10 liter jika pada temperatur tersebut 0.5 mol NH3 mempunyai volume 5 liter den tekanan 2 atmosfir ?

Jawab:
P1 V1 = P2 V2
2.5 = P2 . 10 / P2 = 1 atmosfir

B. HUKUM GAY-LUSSAC

“Volume gas-gas yang bereaksi den volume gas-gas hasil reaksi bile diukur pada suhu dan tekanan yang sama, akan berbanding sebagai bilangan bulat den sederhana”.

Jadi untuk: P1 = P2 dan T1 = T2 berlaku : V1 / V2 = n1 / n2

Contoh:
Hitunglah massa dari 10 liter gas nitrogen (N2 ) jika pada kondisi tersebut 1 liter gas hidrogen (H2 ) massanya 0.1 g.
Diketahui: Ar untuk H = 1 dan N = 14

Jawab:

V1/V2 = n1/n2

10/1 = (x/28) / (0.1/2)

x = 14 gram

Jadi massa gas nitrogen = 14 gram.

C. HUKUM BOYLE-GAY LUSSAC

Hukum ini merupakan perluasan hukum terdahulu dan diturunkan dengan keadaan harga n = n2 sehingga diperoleh persamaan:

P1. V1 / T1 = P2 . V2 / T2

D. HUKUM AVOGADRO

“Pada suhu dan tekanan yang sama, gas-gas yang volumenya sama mengandung jumlah mol yang sama. Dari pernyataan ini ditentukan bahwa pada keadaan STP (0o C 1 atm) 1 mol setiap gas volumenya 22.4 liter volume ini disebut sebagai volume molar gas.

Contoh:
Berapa volume 8.5 gram amoniak (NH3) pada suhu 27o C dan tekanan 1 atm ?
(Ar: H = 1 ; N = 14)

Jawab:
85 g amoniak = 17 mol = 0.5 mol

Volume amoniak (STP) = 0.5 x 22.4 = 11.2 liter

Berdasarkan persamaan Boyle-Gay Lussac:

P1 . V1 / T1 = P2 2 . V2 / T2
1 x 112.1 / 273 = 1 x V2 / (273 + 27)

V2 = 12.31 liter

KONSEP MOL

Saat kita membeli apel atau daging kita selalu mengatakan kepada penjual berapa kilogram yang ingin kita beli, demikian pula berapa liter saat kita ingin membeli minyak tanah. Jarak dinyatakan dalam satuan meter atau kilometer. Ilmu kimia menggunakan satuan mol untuk menyatakan satuan jumlah atau banyaknya materi.

Unsur dengan jumlah mol berbeda

Unsur dengan jumlah mol berbeda

Hubungan Mol dengan Tetapan Avogadro

Kuantitas atom, molekul dan ion dalam suatu zat dinyatakan dalam satuan mol. Misalnya, untuk mendapatkan 18 gram air maka 2 gram gas hidrogen direaksikan dengan 16 gram gas oksigen.

2H2O + O2 → 2H2O

Dalam 18 gram air terdapat 6,023×1023 molekul air. Karena jumlah partikel ini sangat besar maka tidak praktis untuk memakai angka dalam jumlah yang besar. Sehingga iistilah mol diperkenalkan untuk menyatakan kuantitas ini. Satu mol adalah jumlah zat yang mangandung partikel (atom, molekul, ion) sebanyak atom yang terdapat dalam 12 gram karbon dengan nomor massa 12 (karbon-12, C-12). Jumlah atom yang terdapat dalam 12 gram karbon-12 sebanyak 6,02×1023 atom C-12. tetapan ini disebut tetapan Avogadro.

Tetapan Avogadro (L) = 6,02×1023 partikel/mol

Lambang L menyatakan huruf pertama dari Loschmidt, seorang ilmuwan austria yang pada tahun 1865 dapat menentukan besarnya tetapan Avogadro dengan tepat. Sehingga,

1 mol emas = 6,02×1023 atom emas

1 mol air = 6,02×1023 atom air

1 mol gula = 6,02×1023 molekul gula

1 mol zat X = L buah partikel zat X

Hubungan Mol dengan Jumlah Partikel

Telah diketahui bahwa 1mol zat X = l buah partikel zat X, maka

2 mol zat X = 2 x L partikel zat X

5 mol zat X = 5 x L partikel zat X

n mol zat X = n x L partikel zat X

Jumlah partikel = n x L

Contoh soal:

Berapa mol atom timbal dan oksigen yang dibutuhkan untuk membuat 5 mol timbal dioksida (PbO2).

Jawab :

1 mol timbal dioksida tersusun oleh 1 mol timbal dan 2 mol atom oksigen (atau 1 mol molekul oksigen, O2). Sehingga terdapat

Atom timbal = 1 x 5 mol = 5 mol

Atom oksigen = 2 x 5 mol = 10 mol (atau 5 mol molekul oksigen, O2)

Contoh soal

Berapa jumlah atom besi (Ar Fe = 56 g/mol) dalam besi seberat 0,001 gram.

Jawab

rm14

Massa Molar

Telah diketahui bahwa satu mol adalah jumlah zat yang mengandung partikel (atom, molekul, ion) sebanyak atom yang terdapat dalam 12 gram karbon dengan nomor massa 12 (karbon-12, C-12). Sehingga terlihat bahwa massa 1 mol C-12 adalah 12 gram. Massa 1 mol zat disebut massa molar. Massa molar sama dengan massa molekul relatif (Mr) atau massa atom relatif (Ar) suatu zat yang dinyatakan dalam gram.

Massa molar = Mr atau Ar suatu zat (gram)

Contoh:

Massa dan Jumlah Mol Atom/Moleku

Massa dan Jumlah Mol Atom/Moleku

Hubungan mol dan massa dengan massa molekul relatif (Mr) atau massa atom relatif (Ar) suatu zat dapat dicari dengan

Gram = mol x Mr atau Ar

Contoh soal:

Berapa mol besi seberat 20 gram jika diketahui Ar Fe = 56 g/mol

Jawab :

Besi tersusun oleh atom-atom besi, maka jumlah mol besi

rm25

Contoh soal :

Berapa gram propana C3H8 dalam 0,21 mol jika diketahui Ar C = 12 dan H = 1

Jawab:

Mr Propana = (3 x 12) + (8 x 1) = 33 g/mol, sehingga,

gram propana = mol x Mr = 0,21 mol x 33 g/mol = 9,23 gram

Volume Molar

Avogadro mendapatkan hasil dari percobaannya bahwa pada suhu 0°C (273 K) dan tekanan 1 atmosfir (76cmHg) didapatkan tepat 1 liter oksigen dengan massa 1,3286 gram. Maka,

rm33

Karena volume gas oksigen (O2) = 1 liter,

rm43

Pengukuran dengan kondisi 0°C (273 K) dan tekanan 1 atmosfir (76cmHg) disebut juga keadaan STP(Standard Temperature and Pressure). Pada keadaan STP, 1 mol gas oksigen sama dengan 22,3 liter.

Avogadro yang menyata-kan bahwa pada suhu dan tekanan yang sama, gas-gas yang bervolume sama mengandung jumlah molekul yang sama. Apabila jumlah molekul sama maka jumlah molnya akan sma. Sehingga, pada suhu dan tekanan yang sama, apabila jumlah mol gas sama maka volumenyapun akan sama. Keadaan standar pada suhu dan tekanan yang sma (STP) maka volume 1 mol gas apasaja/sembarang berharga sama yaitu 22,3 liter. Volume 1 mol gas disebut sebagai volume molar gas (STP) yaitu 22,3 liter/mol.

Volume Gas Tidak Standar

Persamaan gas ideal

Persamaan gas ideal dinyatakan dengan:

PV=nRT

keterangan:

P; tekanan gas (atm)

V; volume gas (liter)

N; jumlah mol gas

R; tetapan gas ideal (0,082 liter atm/mol K) T; temperatur mutlak (Kelvin)

Gas Pada Suhu dan Tekanan Sama

Avogadro melalui percobaannya menyatakan bahwa pada suhu dan tekanan yang sama, gas-gas yang bervolume sama mengandung jumlah molekul yang sama. Apabila jumlah molekulnya sama maka jumlah molnya sama. Jadi pada suhu dan tekanan yang sama perbandingan mol gas sama dengan perbandingan volume gas. Maka,

rm52

Molaritas

Larutan merupakan campuran antara pelarut dan zat terlarut. Jumlah zat terlarut dalam larutan dinyatakan dalam konsentrasi. Salah satu cara untuk menyatakan konsentrasi dan umumnya digunakan adlah dengan molaritas (M). molaritas merupakan ukuran banyaknya mol zat terlarut dalam 1 liter larutan.

rm62

pengenceran dilakukan apabila larutan terlalu pekat. Pengenceran dilakukan dengan penambahan air. Pengenceran tidak merubah jumlah mol zat terlarut. Sehingga,

V1M1 = V2M2

keterangan:

V1 = volume sebelum pengenceran

M1 = molaritas sebelum pengenceran

V2 = volume sesudah pengenceran

M2 = molaritas sesudah pengenceran

pembuatanlarutan

Pembuatan Larutan



sumber : http://www.chem-is-try.org/materi_kimia/kimia-smk/kelas_x/konsep-mol-2/

KESETIMBANGAN

Kesetimbangan (Bahasa Inggris: equilibrium) dapat merujuk pada beberapa hal, antara lain

  • Kesetimbangan kimia, suatu keadaan sewaktu konsentrasi reaktan dan produk tidak berubah terhadap waktu.
  • Kesetimbangan hidrostatik, suatu keadaan dalam suatu sistem sewaktu suatu kompresi karena gravitasi diimbangi oleh suatu gaya gradien tekanan.

Selayang pandang

Tujuan utama termodinamika kimia ialah pembentukan kriteria untuk ketentuan penentuan kemungkinan terjadi atau spontanitas dari transformasi yang diperlukan.[1] Dengan cara ini, termokimia digunakan memperkirakan perubahan energi yang terjadi dalam proses-proses berikut:

  1. reaksi kimia
  2. perubahan fase
  3. pembentukan larutan

Termokimia is terutama berkaitan dengan fungsi keadaan berikut ini yang ditegaskan dalam termodinamika:

Sebagian besar ciri-ciri dalam termokimia berkembang dari penerapan hukum I termodinamika, hukum 'kekekalan' energi, untuk fungsi keadaan berikut ini.

1651 BRADDON WAY. EL CAJON, CA 92021 US

TERMOKIMIA

Termokimia ialah cabang kimia yang berhubungan dengan hubungan timbal balik panas dengan reaksi kimia atau dengan perubahan keadaan fisika. Secara umum, termokimia ialah penerapan termodinamika untuk kimia. Termokimia ialah sinonim dari termodinamika kimia.

JENIS - JENIS KROMATOGRAFI

Kromatografi Cair (Liquid Chromatography)

Kromatografi cair merupakan teknik yang tepat untuk memisahkan ion atau molekul yang terlarut dalam suatu larutan. Jika larutan sampel berinteraksi dengan fase stasioner, maka molekul-molekul didalamnya berinteraksi dengan fase stasioner; namun interaksinya berbeda dikarenakan perbedaan daya serap (adsorption), pertukaran ion (ion exchange), partisi (partitioning), atau ukuran. Perbedaan ini membuat komponen terpisah satu dengan yang lain dan dapat dilihat perbedaannya dari lamanya waktu transit komponen tersebut melewati kolom.[3] Terdapat beberapa jenis kromatografi cair, diantaranya: reverse phase chromatography, High Performance Liquid Chromatography (HPLC), size exclusion chromatography, serta supercritical fluid chromatography.[4]
[sunting]
Reverse phase chromatography

Reverse phase chromatography merupakan alat analitikal yang kuat dengan memadukan sifat hidrofobik serta rendahnya polaritas fase stasioner yang terikat secara kimia pada padatan inert seperti silika.[4] Metode ini biasa digunakan untuk proses ekstraksi dan pemisahan senyawa yang tidak mudah menguap (non-volatile).[4]
[sunting]


High performance liquid chromatography

High performance liquid chromatography (HPLC) mempunyai prinsip yang mirip dengan reverse phase.[4] Hanya saja dalam metode ini, digunakan tekanan dan kecepatan yang tinggi.[4] Kolom yang digunakan dalam HPLC lebih pendek dan berdiameter kecil, namun dapat menghasilkan beberapa tingkatan equilibrium dalam jumlah besar.[4]

[sunting]
Size exclusion chromatography

Size exclusion chromatography, atau yang dikenal juga dengan gel permeation atau filtration chromatography biasa digunakan untuk memisahkan dan memurnikan protein.[4] Metode ini tidak melibatkan berbagai macam penyerapan dan sangat cepat.[4] Perangkat kromatografi berupa gel berpori yang dapat memisahkan molekul besar dan molekul kecil.[4] Molekul besar akan terelusi terlebih dahulu karena molekul tersebut tidak dapat penetrasi pada pori-pori.[4]
[sunting]
Kromatografi Pertukaran Ion (Ion-Exchange Chromatography)

Kromatografi pertukaran ion (ion-exchange chromatography) biasa digukanan untuk pemurnian materi biologis, seperti asam amino, peptida, protein.[5][6] Metode ini dapat dilakukan dalam dua tipe, yaitu dalam kolom maupun ruang datar (planar).[5] Terdapat dua tipe pertukaran ion, yaitu pertukaran kation (cation exchange) dan pertukaran anion (anion exchange).[6] Pada pertukaran kation, fase stasioner bermuatan negatif; sedangkan pada pertukaran anion, fase stasioner bermuatan positif.[6] Molekul bermuatan yang berada pada fase cair akan melewati kolom.[6] Jika muatan pada molekul sama dengan kolom, maka molekul tersebut akan terelusi.[6] Namun jika muatan pada molekul tidak sama dengan kolom, makan molekul tersebut akan membentuk ikatan ionik dengan kolom.[6] Untuk mengelusi molekul yang menempel pada kolom diperlukan penambahan larutan dengan pH dan kekuatan ionik tertentu.[6] Pemisahan dengan metode ini sangat selektif dan karena biaya untuk menjalankan metode ini murah serta kapasitasnya tinggi, maka metode ini biasa digunakan pada awal proses keseluruhan.[6]


http://id.wikipedia.org/wiki/Kromatografi#Jenis_Kromatografi

KROMATOGRAFI


Kromatografi adalah suatu teknik pemisahan molekul berdasarkan perbedaan pola pergerakan antara fase gerak dan fase diam untuk memisahkan komponen (berupa molekul) yang berada pada larutan.[1] Molekul yang terlarut dalam fase gerak, akan melewati kolom yang merupakan fase diam.[1] Molekul yang memiliki ikatan yang kuat dengan kolom akan cenderung bergerak lebih lambat dibanding molekul yang berikatan lemah.[2] Dengan ini, berbagai macam tipe molekul dapat dipisahkan berdasarkan pergerakan pada kolom.[2]

Setelah komponen terelusi dari kolom, komponen tersebut dapat dianalisa dengan menggunakan detektor atau dapat dikumpulkan untuk analisa lebih lanjut.[2] Beberapa alat-alat analitik dapat digabungkan dengan metode pemisahan untuk analisis secara on-line (on-line analysis) seperti: penggabungan kromatografi gas (gas chromatography) dan kromatografi cair (liquid chromatography) dengan mass spectrometry (GC-MS dan LC-MS), Fourier-transform infrared spectroscopy (GC-FTIR), dan diode-array UV-VIS (HPLC-UV-VIS).[2]


http://id.wikipedia.org/wiki/Kromatografi

MATERI

Materi adalah setiap objek atau bahan yang membutuhkan ruang, yang jumlahnya diukur oleh suatu sifat yang disebut massa.[1] Materi tersusun atas atom dan molekul, yang dapat berupa unsur ataupun senyawa. Materi umumnya dapat dijumpai dalam empat fase berbeda, yaitu padat, cair, gas, dan plasma. Namun demikian, terdapat pula fase materi yang lain, seperti kondensat Bose-Einstein.
TERIMA KASIH SEMOGA ANDA MENDAPATKAN ILMU YANG BERMANFAAT